
Performance Portability Issues for a Large-Scale

Computational Fluid Dynamics Application on Emerging

High-Performance Architectures

Aaron Walden

NASA Langley Research Center

Hampton Virginia

Eric Nielsen

NASA Langley Research Center

Hampton Virginia

Mohammad Zubair

Old Dominion University

Norfolk Virginia

Performance, Portability, and Productivity in HPC Workshop

September 1-2, 2020

(Originally April 7-9 in Kansas City, MO)

Aeroacoustics:

Gulfstream

G550

Separated

Flows

NASA/Boeing

Truss-Braced Wing

Launch Abort

System

Retropropulsion

for Mars Entry

Rotorcraft

Applications

3

Performance on Emerging Architectures

Enable science that was not previously possible, in a cost-effective way!

Performance &

Portability

Architecture Programming Environment

Domain Expert
HPC Expert

 GPU: NVIDIA, AMD

 CPU: ThunderX2, Fujitsu

 VECTOR: NEC Vector

Engine

 Works closely with HPC expert

 Enable modifications to the

computations to match the

underlying architecture

 Works closely with domain

expert

 Understand computer

architecture and

programming environments

 NATIVE: Fortran/C/C++, CUDA, HIP

 PORTABLE: OPENCL, SYCL, OCCA,

IntelOneAPI, Kokkos, Raja, ...

 Works closely with HPC expert

 Enable modifications to the

computations to match the

underlying architecture

Porting a Large Application to Diverse Architectures

o Many-core CPU (e.g., Intel Xeon, Marvell ThunderX2)

o Parallelization across many cores

o Memory and cache utilization

o Vectorization

o NUMA issues

o Accelerator: GPU (e.g., NVIDIA Tesla V100/A100 and AMD MI50/60)

o Accelerator Issue (Heterogeneous computing)

o Fine grain data parallelism

o Memory and cache utilization

o SIMT architecture (Warp/Subgroup)
Requires offloading almost
the full application before
you see performance benefit

Two Dimensions of Performance Portability

o Target HPC Architecture

o Multicore CPU: Intel Xeon, Marvell ThunderX2, Fujitsu A64FX, NEC Vector Engine (large vector)

o GPU: NVIDIA V100/A100, AMD MI50/MI60, Intel Xe

o Programming Environment

o Support CPU and GPU: OpenACC, OpenMP, SYCL, OCCA, Kokkos, RAJA, etc.

o A single code base that supports both CPU and GPU. The single code base may query the underlying

system and take different paths in the code depending on the underlying architecture (e.g. SYCL)

o Support GPU only: CUDA, HIP

Can we maintain optimal performance on a given architecture when we code a computation using a

different programming environment?

Can we maintain optimal performance on different architectures when we use a single code base

written using a programming environment that supports diverse architectures (e.g. SYCL)?

Questions:

6

FUN3D Linear Solver

• FUN3D solves the Navier-Stokes equations using implicit time integration on general unstructured grids

• An approximate nearest-neighbor linearization of the residual equations for each control volume gives

rise to a large tightly-coupled system of block-sparse linear equations

Multicolor point-implicit relaxation of large

linear system of equations. Focus of the

talk will be on this kernel; timings given for

single sweep over global system.

FUN3D Multicolor Linear Solver

o Implicit scheme results in linear systems of equations:

o 𝐴 Δ𝑞=𝑏, 𝐴 is a sparse 𝑛×𝑛 block matrix for 𝑛 grid points; block is of size 𝑛𝑏×𝑛𝑏

o Matrix 𝐴 is segregated into two separate matrices:

o 𝐴≡𝑂+𝐷, where O and 𝐷 represent the off-diagonal and diagonal blocks of 𝐴

o Prior to performing each linear solve, each diagonal block 𝐷 is decomposed in-place

into lower and upper triangular matrices

o Solver Challenges

o With an average of few off-diagonal blocks per row, the arithmetic intensity of

the computation is quite low (≈0.5) memory bound

o The number of rows associated with a color can vary significantly.

Consequently the amount of parallelism available for different colors varies

significantly.

Block-sparse

matrix-vector product

Optimization Issues for Multicolor Linear Solver

o To understand performance portability issues associated with a particular kernel, it is

critical to understand the optimal performance that may be achieved on each target

architecture.

o This typically requires a specific implementation targeting each individual architecture, leveraging

low-level approaches that are not portable.

o Optimized implementations of the linear solver kernel have been established for all of the target

platforms considered.

• To achieve optimal performance on the Intel Xeon Skylake and Marvell ThunderX2 CPUs, kernels were developed using

AVX-512 and NEON vector intrinsics, respectively.

• An optimized CUDA implementation is used for the NVIDIA GPU architecture.

• To develop an optimal implementation for the AMD GPU, the CUDA kernel has been transformed to a HIP implementation with

specific customizations targeting the AMD architecture.

• Several higher-level programming models are currently being explored to provide a single-source approach capable of achieving

reasonable performance across architectures.

Optimization on Intel Skylake

ARCHITECTURE CRITICAL PERFORMANCE ISSUES IMPLEMENTATION
OPTIMIZATION

EFFORT

% OF PEAK

MEMORY

BANDWIDTH

TIME

Intel Skylake

6148

(Dual Socket)

• NUMA: minimize memory traffic

between two NUMA nodes

• Vectorization: utilization of the Intel

vector unit based on AVX-512

• Cache and memory utilization	

• Use of hybrid implementation, MPI +

OpenMP, with an MPI rank on each

NUMA node and OpenMP threads for

cores within a node

• For vectorization, map a complete non-

zero block to two 512-bit vectors

• Use of vector loads and cache

prefetching

• Language: C and Intel Vector Intrinsics

Hard 84% 11 ms

Optimization on ARM ThunderX2

ARCHITECTURE CRITICAL PERFORMANCE ISSUES IMPLEMENTATION
OPTIMIZATION

EFFORT

% OF PEAK

MEMORY

BANDWIDTH

TIME

ARM Thunder X2

CN 9975

(Dual Socket)

• NUMA: minimize memory traffic

between two NUMA nodes

• Vectorization: utilization of the

NEON vector unit

• Cache and memory utilization	

• Use of Hybrid implementation, MPI +

OpenMP, with an MPI rank on each

NUMA node and OpenMP threads for

cores within a node

• For vectorization map partial columns

of a non-zero block to a 128-bit vector

• Use of vector loads and cache

prefetching

• Language: C and NEON Vector

Intrinsics	

Moderate 62% 11 ms

Optimization on NVIDIA Tesla V100 GPU

ARCHITECTURE CRITICAL PERFORMANCE ISSUES IMPLEMENTATION
OPTIMIZATION

EFFORT

% OF PEAK

MEMORY

BANDWIDTH

TIME

NVIDIA Volta

V100

• GPU global memory and shared

memory utilization

• Enable fine-grained parallelism for

sparse computation

• Minimize thread divergence -

effective SIMT execution using warp

of 32 threads

• Use of advanced instructions that

share data within a warp without

going through memory

• Perform coalesced memory loads by

mapping a warp of 32 threads to a non-

zero block of 25 elements

• A warp processes a row block and

aggregate partial results from different

threads using shuffle instruction

• Use of shared memory to store

intermediate result and also for storing

elements of diagonal blocks

• Language: C/C++ CUDA

Hard 73% 3.3 ms

Optimization on AMD MI50 GPU

ARCHITECTURE CRITICAL PERFORMANCE ISSUES IMPLEMENTATION
OPTIMIZATION

EFFORT

% OF PEAK

MEMORY

BANDWIDTH

TIME

AMD Instinct

MI50

• GPU global memory and shared

memory utilization

• Enable fine-grained parallelism for

sparse computation

• Minimize thread divergence -

effective SIMT execution using

wavefront of 64 threads

• Use of advanced instructions that

share data within a wavefront

without going through memory

• Perform coalesced memory loads by

mapping a wavefront of 32 threads to

process two row-blocks with first 32

threads of the wavefront are mapped to

a non-zero block of the first row, and

the rest of the 32 threads are mapped

to a non-zero block of the second row

• Use of shared memory to store the

intermediate result and also for storing

elements of diagonal blocks

• A 1/2 wavefront processes a row

block and aggregate partial results from

different threads using shuffle

instruction

• Language: HIP, C/C++ runtime API. HIP

code is generated by transforming

optimized CUDA code

Easy (starting

from optimized

CUDA code)

51% 4.3 ms

13

Performance Portability: Solver Kernel Using Different Programming
Environments on V100

SYCL

CUDA

OPENACC

OCCA

Portability vs Performance Portability

Intel Xeon

Skylake

Marvell

ThunderX2

NVIDIA Tesla

V100

NVIDIA Tesla

A100

AMD

MI50

OpenACC - -
1.62

Easy / Hard

1.15

Easy / Hard
-

HIPSYCL - -

1.62

Moderate /

Hard

- -

HIP - -

1.59

Moderate /

Hard

-

2.09

Moderate /

Hard

SYCL For

CUDA
- -

1.62

Moderate /

Hard

- -

CUDA - -

1.59

Moderate /

Hard

1.00

Moderate /

Hard

-

Vector

Intrinsics

5.38

Hard / Hard

5.38

Hard / Hard
- - -

OCCA - -

1.59

Moderate /

Hard

-

2.09

Moderate /

Hard

• Numeric value indicates

relative speed (lower is

better)

• Ratings indicate effort for

implementation / optimization

• Red indicates programming

model that provides best

performance for selected

architecture

• Very much a work in

progress; more to come

Conclusions

• Scientific kernels can greatly benefit from emerging high-performance architectures such as ARM,

NVIDIA and AMD GPUs.

• For achieving performance on these architectures it is necessary to put effort in careful planning and

optimization of computationally intensive kernels.

• For optimizing code on a given architecture, it is necessary to understand the underlying architecture.

• The general portability framework hides the architecture from the application developer and tries to generate

optimized code for a given architecture. However, a number of applications require a restructuring of code

which is difficult to do in an automated way or by a run-time environment.

• For these applications, it is much easier to restructure the code at the application level to match the underlying

architecture.

• Assist vendors in developing optimized libraries of interest to NASA to ensure performance portability on

newer models.

